论文部分内容阅读
本文研究了临界情形的拟线性二阶系统的边值问题ε(d2x)/(dt2)=A(t)(dx)/(dt)+B(x,t)x(o,ε)=a(ε),ε[a(dx)/(dt)(0,ε)+b(dx)/(dt)(1,ε]=β(e),利用改进的 Vasiléva 方法构造了具有任意精度的两端均具边界层且左端边界层有两个具有不同尺度 t/ε1/2,t/ε的边界层函数的形式渐近解,并证明了精确解的存在唯一性及所构造的渐近解的一致有效性,并给出了余项估计。