论文部分内容阅读
The recursive least squares identification algorithm (RLS) for large scale multivariable systems requires a large amount of calculations, therefore, the RLS algorithm is difficult to implement on a computer. The computational load of estimation algorithms can be reduced using the hierarchical least squares identification algorithm (HLS) for large scale multivariable systems. The convergence analysis using the Martingale Convergence Theorem indicates that the parameter estimation error (PEE) given by the HLS algorithm is uniformly bounded without a persistent excitation signal and that the PEE consistently converges to zero for the persistent excitation condition. The HLS algorithm has a much lower computational load than the RLS algorithm.
The recursive least squares identification algorithm (RLS) for large scale multivariable systems requires a large amount of calculations, therefore, the RLS algorithm is difficult to implement on a computer. The computational load of estimation algorithms can be reduced using the hierarchical least squares identification algorithm (HLS) for large scale multivariable systems. The convergence analysis using the Martingale Convergence Theorem indicates that the parameter estimation error (PEE) given by the HLS algorithm is uniformly bounded without a persistent excitation signal and that the PEE consistently converges to zero for the persistent excitation condition. The HLS algorithm has a much lower computational load than the RLS algorithm.