论文部分内容阅读
在旋转机械轴系振动故障模拟试验的基础上,对大量故障模拟试验数据进行计算,建立了典型故障的小波一阶灰度矩向量样本,将其作为概率神经网络的输入进行故障诊断研究。结果表明,基于一阶灰度矩向量的概率神经网络可实现对训练样本100%的正确识别率,对“陌生”样本的正确识别率也超过75%。可见,概率神经网络综合了Bayes分类器和神经网络的优势,利用概率神经网络融合信号的一阶灰度矩向量特征实现旋转机械轴系故障模式识别是一种可行有效的方法。