论文部分内容阅读
为了给环境保护决策提供有价值的预测数据,提出利用Elman神经网络建立污染源数据预测模型的方法,以大气中的主要污染物SO2为例,用预测模型表征SO2的浓度和气温、相对湿度、风速、时间等影响因子及其历史数据之间的复杂关系.使用训练后的模型对数据进行模拟仿真,结果表明所建立模型的计算输出值与实际样本数据有着较好的一致性.模型预测效果优于基于BP神经网络的预测模型.