论文部分内容阅读
首先利用预报残差构造的最优自适应因子设计GPS/INS组合导航自适应滤波器。并针对BP神经网络存在的训练速度慢、容易陷入局部极小等问题,给出网络的改进算法。利用神经网络对自适应滤波器状态方程的预报值进行在线修正,给出神经网络辅助的GPS/INS组合导航自适应滤波算法。最后,利用实测数据进行验证。结果表明,改进的神经网络算法明显提高网络收敛速度;两种自适应滤波算法相对标准组合导航算法都能够可靠地反映载体运动轨迹;神经网络辅助的GPS/INS组合导航自适应滤波算法相对GPS/INS组合导航自适应滤波算法在精度和可靠性方面又有明显提高。