论文部分内容阅读
在锌净化除钴过程中,生产数据存在噪声且变量间具有多重相关性,从而难以准确预测钴离子浓度。为此,采用偏最小二乘方法去除数据中的噪声,降低各参数间的多重相关性。通过为不同时期的样本数据赋予不同的权值,提高了最小二乘支持向量机(LSSVM)模型预测的准确性。利用改进的粒子群优化算法优化选择LSSVM模型的惩罚因子和核函数参数,以避免人为选择参数的盲目性。仿真结果表明,PLS-LSSVM模型的预测精度高于偏最小二乘回归和LSSVM。