论文部分内容阅读
AIM: To investigate the effect of arg-gly-asp-mannose-6phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro.METHODS: Hepatic stellate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor β1, M6P, RGD, or RGD-M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA)was detected by immunocytochemistry, type Ⅲprocollagen (PCⅢ) in supatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry.RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PC Ⅲ expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6P.CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCⅢand decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs,which may be a new approach to the prevention and treatment of liver fibrosis.