论文部分内容阅读
膜生物反应器(Membrane Bio-Reactor, MBR)处理污水是一个复杂的动态过程,难以用数学模型直接建模。针对该问题,本文利用差分进化算法(Differential Evolution Algorithm, DE)优化的循环神经网络(Recurrent Neural Network, RNN)对污水处理过程的膜通量进行预测。首先运用主成分分析法确定影响膜通量的相关过程变量;然后用DE算法优化RNN的初始权值和阈值;最后用训练好的DE-RNN模型进行预测并与样本数据对比。结果显示,该模型对膜通