论文部分内容阅读
当热作用时间或受热器件结构尺寸呈现微尺度特征时,热流运动的惯性效应将对热量的传递过程产生显著地影响.基于热质的概念,依据牛顿力学原理引入用于描述热质运动的热波方程,结合各向同性材料的本构关系,构建了计及热流运动惯性效应的广义热弹性动力学模型.利用超常传热的微尺度特征,采用解析的方法对半无限大体外表面受热冲击作用的一维问题进行了渐近求解.通过对热波、热弹性波的传播和各物理场分布的分析以及与已有广义热弹性理论预测结果的对比,揭示了热流运动的惯性效应对热弹性行为的影响.结果表明:热量的传递除了受到热流加速的时间惯性影响之外,热流运动的空间惯性也对传热行为产生影响,当计及空间惯性时,热波、热弹性波的波速、波前位置,各物理场的建立时间、阶跃峰值及阶跃间隔均受到不同程度的影响.
The inertial effect of the heat flow motion will have a significant effect on the heat transfer process when the thermal action time or the microstructure of the heated device exhibits microscale characteristics.According to the concept of thermal mass, the heat used to describe the thermal mass movement is introduced according to the Newtonian mechanics Wave equation and the constitutive relation of isotropic materials, a generalized thermo-elastic dynamical model considering the inertial effect of the heat flow motion is constructed. By using the microscale characteristics of hyperthermic heat transfer, an analytical method is used to analyze the thermal shock of the semi- Asymptotic solution to the one-dimensional problem.According to the analysis of the propagation of the thermo-wave, the thermo-elastic wave and the distribution of the physical fields and the comparison with the prediction of the generalized thermo-elastic theory, The results show that in addition to the time inertia of the heat transfer, the space inertia of the heat flow also affects the heat transfer behavior. When the space inertia is taken into account, the wave velocity of the thermo-acoustic wave and thermo-elastic wave , The position of the wavefront, the establishment time of each physics field, the step peak and the step interval are all affected to different degrees.