论文部分内容阅读
本文提出了一种新电力变压器故障诊断的动态聚类方法,以人工免疫网络对故障样本进行免疫学习和记忆,提取表征故障样本的有用特征作为核可能性聚类算法的初始聚类中心,再用遗传算法动态选取聚类个数和中心实现故障样本的分类。该诊断方法经大量实例分析,并将其结果与BP神经网络等方法的结果相比,表明该算法具有较高的诊断精度。