【摘 要】
:
提出了一种基于支持向量机(support vector machines,SVM)的多通道卷积神经网络(convolutionnal neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的网络模型.模型将三个不同通道的CNN通道提取的文本特征和BiGRU模型通道提取到的文本信息进行拼接,将它们的输出向量作为SVM模型的输入,由SVM模型二分类给出文本的情感倾向.训练文章模型所用的数据集为谭松波酒店评论数据信息,从训练的
【机 构】
:
河北经贸大学 河北石家庄 050062
论文部分内容阅读
提出了一种基于支持向量机(support vector machines,SVM)的多通道卷积神经网络(convolutionnal neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的网络模型.模型将三个不同通道的CNN通道提取的文本特征和BiGRU模型通道提取到的文本信息进行拼接,将它们的输出向量作为SVM模型的输入,由SVM模型二分类给出文本的情感倾向.训练文章模型所用的数据集为谭松波酒店评论数据信息,从训练的准确度可知:与其他的模型相比,文章的模型有更高的准确率,可以得到更好的分类效果.
其他文献
针对肺腺癌在医疗过程中的数据信息量庞大而面临的诊断治疗等难题,提出了一种基于BP神经网络的肺腺癌预测的方法实现根据肺腺癌临床数据进行科学准确地预测.从数据获取出发,在癌症基因组图谱(the cancer genome atlas,TCGA)中下载患者的临床数据,对原始数据进行特征工程处理,利用特征值及目标值使用弹性BP算法(resilient back propagation,RPROP)建立模型,最后利用测试集数据评估模型.最终模型准确率达90.37%.结果 表明,数据的精确程度,算法的适用性对预测结果
随着二手房市场在我国房地产市场中所扮演的角色越来越重要,快速精准地对二手房价格进行预测的需求也越来越大.基于此,选取区域、房屋朝向、装修情况等30个影响二手房价格的特征变量,通过爬虫技术爬取链家网郑州二手房交易数据,构建随机森林模型、GBDT模型、XGBoost模型、LightGBM模型四种二手房价格预测模型.通过对比模型评价指标发现:LightGBM模型的预测效果最好,模型拟合优度达到80.99%,对提高二手房估价精度有一定的参考意义.
针对动漫产业发展迅速导致产业研究热点与研究主题难以识别的难题,提出了一种基于层次聚类与LDA主题识别的产业文献的分析方法.文章以CNKI的2010-2020年动漫产业的文献为研究对象,借助层次聚类与LDA主题识别进行深入分析文献的内容特征.研究结果发现中国动漫产业的研究热点可以层次聚类为三类,分别为知识产权、发展问题、商业环境的研究热点;该产业研究主题主要有四个,分别为发展模式、商业市场、人才培养、产业政策的研究主题.
针对当前高校中融合门户的研究现状,以及相关信息技术的发展情况,以宁波工程学院为例,提出了一种基于校园数据治理下融合门户的建设方案.从当前数据治理情况出发,首先分析了校园数据的集成架构,然后确定了融合门户中师生校园数据的来源以及共享方式,最后结合师生的使用习惯,为突出便捷服务师生的目标,设计了融合门户的六大功能模块,并给出了主要技术架构.宁波工程学院实践表明:方案以服务师生为目标,能满足智慧校园中师生多元化的需求,为高校智慧校园发展中融合门户的建设提供参考.
针对电厂设备健康评价不完善的问题,提出了一种基于多参数动态偏差的设备健康评价的方法.首先通过BP神经网络对设备参数进行回归估计,获得历史数据和训练数据的残差数据,并根据累积概率密度分布构建残差数据与参数分数的映射关系;然后通过概率分布相似性聚类算法对历史数据进行工况划分,当实时数据进入到BP神经网络和聚类算法后,根据相应公式计算严重等级和工况运行等级,并以此计算设备健康评价分数.通过实例分析,此方法能透彻分析当前参数数值运行态势以及跟其他同类参数的水平定位,对当前设备综合性健康评价具有很好的实用效果.
针对中文命名实体在互联网文本中具有词语多样性、上下文语义性等特点使传统的神经网络模型无法准确获取人名、地名、机构名的难题,提出了一种基于双向LSTM模型的中文命名实体识别方法.在识别过程中模型标注结果加入维特比算法,根据上下文信息分别对中文命名实体以字、词为单位进行有效识别,并与传统神经网络实验结果作对比.结果 表明,利用双向LSTM模型进行命名实体识别精确率较好,而且具有可行性的优势.
为了提高管式加热炉温度控制的动态响应性能,在常规串级控制方案基础上,提出了将模糊控制、Smith预估控制引入加热炉的温度控制系统.根据温差偏移量和温差变化率,模糊PID控制器执行模糊规则,实现加热炉温度控制要求.通过分析加热炉温度串级控制和模糊控制原理,分别进行仿真验证,得出模糊控制在管式加热炉温度控制系统中的优点.和传统PID控制相比,Smith预估控制可以减小系统超调和震动,提升系统稳态性能.仿真结果表明,模糊控制可以缩短系统调节时间、减小超调量,串级PID控制时温度到达给定值的时间是4 min,而模
通过对封闭环境下空气质量的分析,设计了一款空气质量监控系统.以单片机STM32F103为控制器,通过多种传感器如空气颗粒检测器、二氧化碳浓度传感器、温湿度传感器等,实时对空气质量进行监测,包括空气中悬浮颗粒总量及二氧化碳浓度,空气温湿度等信息.监测信息可通过OLED显示器显示,也可以通过Wi-Fi模块实现数据交换.当较封闭的环境中的空气质量超过预先设置的阈值时,可自动控制室内空气循环系统.监控系统可应用于医院,图书馆,教室等人流密集场合.
为解决iOS用户在中草药知识学习上渠道单一的问题,开发了基于iOS系统的中草药学习App.App使用了SwiftUI、Swift进行UI开发,Widget技术添加小组件,CoreData进行数据存储,且设计了数据统计模块,让用户更好地了解自己的学习进度.App支持多用户模式,使用者可以对本地化数据进行增删查改等操作,分享自己对于中草药的认知,提升学习的效率.iOS体验用户表示,App提高了碎片化时间的利用效率,加深了他们对中草药知识的了解.
针对传统笔记记录带来的各种问题,基于Jave开发语言,结合MySQL数据库进行后台管理,手机端采用Flutter,网页端采用Layui框架,设计开发了基于B/S和C/S的云笔记系统.为实现将笔记信息保存在网络上,专门调研了云服务存储信息的架构,并测试了该架构对信息存储的便捷性和安全性.为了实现笔记的编辑和浏览,研究了富文本编辑器的可以用性和实现原理.为了实现对笔记的搜索,现在上传,分类等功能,专门调研了ES搜索引擎,并且研究了数据库的搜索机制.经过系统测试,云笔记提高了用户笔记记录的效率,解决了笔记易丢失