论文部分内容阅读
在数据流聚类时,冗余特征会影响数据的聚类质量,移除冗余特征以提高聚类质量就显得尤为重要。为解决此问题,提出一种基于特征选择的数据流聚类算法(DSCFC)。该算法应用了特征排序、特征等级评定、探测冗余不重要的特征、移除冗余特征算法等。实验结果表明,DSCFC算法能探测出数据流中隐舍的冗余特征并移除冗余特征,在对有冗余特征的数据流聚类时,比CluSteam算法更有效,聚类质量更好。