论文部分内容阅读
提出了一种新的图像分类方法,采用层次结构模拟视皮层各区细胞功能,利用Gabor滤波器提取初级图像特征,经过稀疏化处理后进行中间层模板匹配提取尺度和位置的不变性特征,最后提交给分类网络。仿真实验表明,本文采用的层次化特征提取方法在分类任务中优于经典的局部特征方法(SIFT),与其他图像分类方法相比,本文的方法在少量训练样本下,在多个数据集中可获得优良的测试效果,具有较高的实用价值。