论文部分内容阅读
摘要:随着近年来机电一体化在电力系统中的广泛普及与关注,其所发挥的作用已逐渐日益显著。机电一体化的应用能够有效的提升电力行业用电的安全性保障,通过机电一体化建设,将机电与电力系统联系起来,构建完整的机电电力系统,根据目前的发展趋势和技术水平,准确的分析机电一体化技术的发展应用理念标准,从实际情况出发,逐步提高电力系统的整体智能化发展水平,分析其中相关的不足和优势,按照机电一体化技术建设标准,逐步完善机电一体化的建设,对电力行业的相关应用进行拓展提升,分析其中存在的各类参考意见和思路,结合实际情况,明确实际机电一体化技术的应用研究过程,确保机电一体化建设的合理性。
关键词:机电一体化;电力行业;应用
1机电一体化在电力系统的控制中起主导作用
众所周知,电力系统的覆盖区域性较为广泛,并且在进行统一的分配、调度、协调运行时需要考虑到各个方面,因此也存在着较大的难度。目前,在我国的电力系统中的发电站、变电站、输配电网络、用户等方面都在不同程度上用到了自动控制。电力系统的自动控制的运用主要就是为了保证供电的稳定和安全,保证电力系统运行的安全可靠,提高经济效益。
机电一体化主要是指将机械的主要功能以及动力、信息处理、控制等功能与电子科技相结合,实现机械装置与电子化控制软件、设计有机结合,形成全新的系统。它具有多功能、高质量、高可靠性、低能耗等特定功能价值,涵盖了“技术”和“产品”两个方面,是一个功能强大的系统。当前,机电一体化已经发展成为了一门具有专门系统的学科领域,当今科学发展日新月异,机电一体化也将逐渐被赋予新的内容。
2机电一体化技术发展现状
2.1 机电一体化技术在电力行业的发展现状
近年来,“机电一体化”这个名词越发流行,它最初只被认作为机械与电子的简单结合,但随着微机性能不断提高,以及信息技术、数据库、光学,尤其是通信技术逐渐进入机电一体化,机器可以通过遥控和网络化实现机电一体化,生产范围也日益普及。机电一体化目前多应用于汽车制造、装备制造、机械加工等行业,其优越的性能在电力行业的应用还处于初级阶段。电力行业发展需要集成化、智能化,也需要人性化、绿色化,这些都是机电一体化技术能够做到的,因此,机电一体化技术在电力行业的应用还远远不能满足行业發展的需求,还有待进一步地研究并投入应用。
2.2 机电一体化技术的发展趋势
当今数字化、综合化、网络化以及个性化的技术革命是以微电子、软件、计算机和通信技术为核心引发的,对全球经济、社会、科技和军事等方面发展影响深刻,也影响了机电一体化学科的发展趋势。据有关预测表明,机电一体化技术的发展方向如下所述。
(1)朝着光电一体化发展:一般由传感、动力、信息处理、机械结构等部件即可组成机电一体化系统,加入光学技术,并利用其特点,能有效完善机电一体化系统中的传感、动力和信息处理部件。
(2)朝着柔韧化发展:今后的机电一体化系列产品,会有足够的冗余度来运转执行和控制系统,对突发事件应对能力加强,柔韧化改善。该系统的子系统之间相互独立,均服务于总系统,而本身也具有“自律性”,能就不同环境而做出差异反应,同时,单个子系统的故障不会影响总系统性能发挥,使得总系统柔韧性加强。
(3)朝着智能化发展:未来的机电一体化系列产品的“全息”特点将会更突出,表现为极强的智能化,这是由于信息技术、模糊技术都在快速发展,识别能力增强。
3机电一体化技术在电力行业中的应用
在电力企业中,机电一体化系统是以微处理机为核心,把微机、数据通讯、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在电力企业中主要应用于以下几个方面:
3.1智能化控制技术(IC)
由于电力工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于电力企业的产品设计、生产、控制、设备与产品质量诊断等各个方面。
3.2分布式控制系统(DCS)
分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级或三级的,也可是更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,合系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性,是当前大型机电一体化系统的主要潮流。
3.3开放式控制系统(OCS)
开放控制系统(Open Control System)是目前计算机技术发展所引出的新的结构体系概念。“开放”意味着对一种标准的信息交换规程的共识和支持,按此标准设计的系统,可以实现不同厂家产品的兼容和互换,且资源共享。开放控制系统通过工业通信网络使各种控制设备、管理计算机互联,实现控制与经营、管理、决策的集成,通过现场总线使现场仪表与控制室的控制设备互联,实现测量与控制一体化。
3.4计算机集成制造系统(CIMS)
电力企业的CIMS是将人与生产经营、生产管理以及过程控制连成一体,用以实现从快速闸门自动全开,水轮机组自动控制,自动调压、调频到自动并网送电的过程一体化控制。目前电力企业已基本实现了过程自动化。未来电力企业竞争的焦点是无人值守,自动控制,节约维护成本以及降低人为事故的发生率。为了提高生产率、节能降耗、减少人员,加速资金周转,实现生产、经营、管理整体优化,关键就是加强管理,获取必须的经济效益,提高了企业的竞争力。目前国内已有多家电力企业已广泛实现CIMS化。
3.5现场总线技术(FBT)
现场总线技术(Fird Bus Technology)是连接设置在现场的仪表与设置在控制室内的控制设备之间的数字式、双向、多站通信链路。采用现场总线技术取代现行的信号传输技术就能使更多的信息在智能化现场仪表装置与更高一级的控制系统之间在共同的通信媒体上进行双向传送。
3.6交流传动技术
传动技术在电力工业中起着至关重要的作用。随着电力电子技术和微电子技术的发展,交流调速技术的发展非常迅速。由于交流传动的优越性,电气传动技术在不久的将来由交流传动全面取代直流传动,数字技术的发展,使复杂的矢量控制技术实用化得以实现,交流调速系统的调速性能已达到和超过直流调速水平。现在无论大容量电机或中小容量电机都可以使用同步电机或异步电机实现可逆平滑调速。交流传动系统在轧钢生产中一出现就受到用户的欢迎,应用不断扩大。
结语:
机电一体化的应用越来越广泛,而在电力系统中,不论是电气设备的控制,信息的传播,还是电力系统的保护,都充分利用了机电一体化的知识。可以说有了机电一体化现在的发展,才有了电力系统如今的状态,在未来,随着科技的发展机电一体化在电力系统中的应用将越来越多,而电力系统的发展也将越来越成熟。
参考文献:
[1]李运华.机电控制[M].北京:北京航空航天大学出版社,2003.
[2]章浩,张西良,周士冲.机电一体化技术的发展与应用[J].农机化研究,2006(7):46-47.
[3]冯旭强.机电一体化技术的研究及其应用[J].机械工程与自动化,2009(01).
关键词:机电一体化;电力行业;应用
1机电一体化在电力系统的控制中起主导作用
众所周知,电力系统的覆盖区域性较为广泛,并且在进行统一的分配、调度、协调运行时需要考虑到各个方面,因此也存在着较大的难度。目前,在我国的电力系统中的发电站、变电站、输配电网络、用户等方面都在不同程度上用到了自动控制。电力系统的自动控制的运用主要就是为了保证供电的稳定和安全,保证电力系统运行的安全可靠,提高经济效益。
机电一体化主要是指将机械的主要功能以及动力、信息处理、控制等功能与电子科技相结合,实现机械装置与电子化控制软件、设计有机结合,形成全新的系统。它具有多功能、高质量、高可靠性、低能耗等特定功能价值,涵盖了“技术”和“产品”两个方面,是一个功能强大的系统。当前,机电一体化已经发展成为了一门具有专门系统的学科领域,当今科学发展日新月异,机电一体化也将逐渐被赋予新的内容。
2机电一体化技术发展现状
2.1 机电一体化技术在电力行业的发展现状
近年来,“机电一体化”这个名词越发流行,它最初只被认作为机械与电子的简单结合,但随着微机性能不断提高,以及信息技术、数据库、光学,尤其是通信技术逐渐进入机电一体化,机器可以通过遥控和网络化实现机电一体化,生产范围也日益普及。机电一体化目前多应用于汽车制造、装备制造、机械加工等行业,其优越的性能在电力行业的应用还处于初级阶段。电力行业发展需要集成化、智能化,也需要人性化、绿色化,这些都是机电一体化技术能够做到的,因此,机电一体化技术在电力行业的应用还远远不能满足行业發展的需求,还有待进一步地研究并投入应用。
2.2 机电一体化技术的发展趋势
当今数字化、综合化、网络化以及个性化的技术革命是以微电子、软件、计算机和通信技术为核心引发的,对全球经济、社会、科技和军事等方面发展影响深刻,也影响了机电一体化学科的发展趋势。据有关预测表明,机电一体化技术的发展方向如下所述。
(1)朝着光电一体化发展:一般由传感、动力、信息处理、机械结构等部件即可组成机电一体化系统,加入光学技术,并利用其特点,能有效完善机电一体化系统中的传感、动力和信息处理部件。
(2)朝着柔韧化发展:今后的机电一体化系列产品,会有足够的冗余度来运转执行和控制系统,对突发事件应对能力加强,柔韧化改善。该系统的子系统之间相互独立,均服务于总系统,而本身也具有“自律性”,能就不同环境而做出差异反应,同时,单个子系统的故障不会影响总系统性能发挥,使得总系统柔韧性加强。
(3)朝着智能化发展:未来的机电一体化系列产品的“全息”特点将会更突出,表现为极强的智能化,这是由于信息技术、模糊技术都在快速发展,识别能力增强。
3机电一体化技术在电力行业中的应用
在电力企业中,机电一体化系统是以微处理机为核心,把微机、数据通讯、仪表等技术有机的结合起来,采用组装合并方式,为实现工程大系统的综合一体化创造有力条件,增强系统控制精度、质量和可靠性。机电一体化技术在电力企业中主要应用于以下几个方面:
3.1智能化控制技术(IC)
由于电力工业具有大型化、高速化和连续化的特点,传统的控制技术遇到了难以克服的困难,因此非常有必要采用智能控制技术。智能控制技术主要包括专家系统、模糊控制和神经网络等,智能控制技术广泛应用于电力企业的产品设计、生产、控制、设备与产品质量诊断等各个方面。
3.2分布式控制系统(DCS)
分布式控制系统采用一台中央计算机指挥若干台面向控制的现场测控计算机和智能控制单元。分布式控制系统可以是两级或三级的,也可是更多级的。利用计算机对生产过程进行集中监视、操作、管理和分散控制。随着测控技术的发展,分布式控制系统的功能越来越多。不仅可以实现生产过程控制,而且还可以实现在线最优化、生产过程实时调度、生产计划统计管理功能,成为一种测、控、管一体化的综合系统。DCS具有特点控制功能多样化、操作简便、系统可以扩展、维护方便、可靠性高等特点。DCS是监视集中控制分散,故障影响面小,而且系统具有连锁保护功能,采用了系统故障人工手动控制操作措施,合系统可靠性高。分布式控制系统与集中型控制系统相比,其功能更强,具有更高的安全性,是当前大型机电一体化系统的主要潮流。
3.3开放式控制系统(OCS)
开放控制系统(Open Control System)是目前计算机技术发展所引出的新的结构体系概念。“开放”意味着对一种标准的信息交换规程的共识和支持,按此标准设计的系统,可以实现不同厂家产品的兼容和互换,且资源共享。开放控制系统通过工业通信网络使各种控制设备、管理计算机互联,实现控制与经营、管理、决策的集成,通过现场总线使现场仪表与控制室的控制设备互联,实现测量与控制一体化。
3.4计算机集成制造系统(CIMS)
电力企业的CIMS是将人与生产经营、生产管理以及过程控制连成一体,用以实现从快速闸门自动全开,水轮机组自动控制,自动调压、调频到自动并网送电的过程一体化控制。目前电力企业已基本实现了过程自动化。未来电力企业竞争的焦点是无人值守,自动控制,节约维护成本以及降低人为事故的发生率。为了提高生产率、节能降耗、减少人员,加速资金周转,实现生产、经营、管理整体优化,关键就是加强管理,获取必须的经济效益,提高了企业的竞争力。目前国内已有多家电力企业已广泛实现CIMS化。
3.5现场总线技术(FBT)
现场总线技术(Fird Bus Technology)是连接设置在现场的仪表与设置在控制室内的控制设备之间的数字式、双向、多站通信链路。采用现场总线技术取代现行的信号传输技术就能使更多的信息在智能化现场仪表装置与更高一级的控制系统之间在共同的通信媒体上进行双向传送。
3.6交流传动技术
传动技术在电力工业中起着至关重要的作用。随着电力电子技术和微电子技术的发展,交流调速技术的发展非常迅速。由于交流传动的优越性,电气传动技术在不久的将来由交流传动全面取代直流传动,数字技术的发展,使复杂的矢量控制技术实用化得以实现,交流调速系统的调速性能已达到和超过直流调速水平。现在无论大容量电机或中小容量电机都可以使用同步电机或异步电机实现可逆平滑调速。交流传动系统在轧钢生产中一出现就受到用户的欢迎,应用不断扩大。
结语:
机电一体化的应用越来越广泛,而在电力系统中,不论是电气设备的控制,信息的传播,还是电力系统的保护,都充分利用了机电一体化的知识。可以说有了机电一体化现在的发展,才有了电力系统如今的状态,在未来,随着科技的发展机电一体化在电力系统中的应用将越来越多,而电力系统的发展也将越来越成熟。
参考文献:
[1]李运华.机电控制[M].北京:北京航空航天大学出版社,2003.
[2]章浩,张西良,周士冲.机电一体化技术的发展与应用[J].农机化研究,2006(7):46-47.
[3]冯旭强.机电一体化技术的研究及其应用[J].机械工程与自动化,2009(01).