论文部分内容阅读
该文研究了量子理论与量子神经网络原理,深入分析了量子前向对传网模型与基于递归加权最小二乘的量子前向对传算法。提出了量子前向对传网的定义与知识集,提出了自适应量子前向对传算法,证明了算法的收敛性。该算法全面考虑了在本次学习之前学习速率的总体状况,通过自适应地改变学习速率,控制学习速率适时变化,改善网络的收敛性。有效克服了学习速率过高导致网络振荡发散与学习速率太小降低网络收敛速度的缺陷。仿真结果表明,自适应量子前向对传算法相对基于递归加权最小二乘的量子前向对传算法具有较少的网络训练迭代次数和较高的分类精度。