论文部分内容阅读
提出了主成分分析(PCA)和局部线性嵌入降维方法(LLE)组合的优化RBF神经网络降水预测模型,首先利用主成分分析(PCA)和局部线性嵌入降维方法(LLE)组合对众多气象物理因子降维提取有效因子,再将这些综合有效因子组成的特征空间矩阵作为优化的RBF神经网络的输入矩阵,从而建立网络模型.以此对广西5月三个不同区域平均日降水量进行预报实验,结果表明,该模型具有较好的收敛效果和泛化能力,在预报性能上明显优于同期的T213降水预报、PCA预报、LLE预报,预报稳定性好,预报准确率较高,具有一定的普遍适用性.