论文部分内容阅读
实体关系抽取在信息检索、自动问答、本体学习等领域都具有重要作用。提出了基于弱监督学习的关系抽取框架。首先利用知识库中已有结构化的关系三元组,从自然语言文本中自动获取训练语料;针对训练语料数量较少导致特征不足的问题,采用基于朴素贝叶斯的句子分类器和基于自扩展的训练方法,从未标注数据中获取更多的训练语料;然后利用条件随机场模型训练关系抽取器。实验结果表明所提方法的有效性,有现有方法相比,文中方法获得较高的准确率。