论文部分内容阅读
本文设计了一种改进的卷积神经网络(convolutional neural network,CNN)模型用于高光谱影像分类,该模型能够直接将高光谱影像数据立方体作为输入特征,不需要预先降维处理,且能够综合利用光谱和空间特征进行分类处理。实验结果表明,基于改进的CNN模型的高光谱影像分类方法比传统SVM、1D—CNN和PCA+CNN等方法的分类精度更高。