微悬臂梁传感系统在CNT微热量检测中的应用

来源 :微纳电子技术 | 被引量 : 0次 | 上传用户:zybp821
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对碳纳米管(CNT)微热量检测不易的问题,采用了一种基于微悬臂梁传感器的CNT微热量检测系统进行检测.通过光杠杆检测法测量微悬臂梁弯曲量,从而实现微悬臂梁对CNT的微热量检测,研究了CNT光热转换散发热量对微悬臂梁挠度的影响.用最小二乘法拟合出CNT薄膜温度变化与相应微悬臂梁偏移量关系.结果 显示,温度变化与微悬臂梁偏移量呈线性关系,与理论分析符合,且面积约0.07 mm2的样品薄膜拟合曲线的线性相关系数为0.9932.通过对温度检测的重复性实验,验证了系统具有较高的稳定性;将温度测量值与实验系统的拟合值进行对比,结果基本一致,验证了系统的可靠性.
其他文献
适合您手掌的先锋演讲者.Fusion是一个扬声器,结合了远程相机快门按钮和防丢失报警器.它将播放您喜爱的音乐,简化您的拍照过程,并保护您想要剪辑的任何物品的安全.使用Fusion扬声器,您可以在一个紧凑的机箱中获得一个三合一的小工具.该项目旨在创造现有产品的下一代.它包括寻找新的设计方向、构造解决方案、改善声音特性和用户体验.
期刊
叉指背接触式(IBC)太阳电池因正面没有金属栅线遮挡,具有较高的短路电流,且组件外观更加美观.但由于IBC太阳电池正负电极在背面交叉式分布,在制备过程中需要采用光刻掩模技术进行隔离,难以实现大规模生产.采用Quokka软件仿真模拟了电阻率和扩散方阻对n型IBC太阳电池效率的影响,并对不同电阻率和扩散方阻的电池片进行了实验验证,从n型单晶硅片电阻率的选择和扩散工艺优化方面为IBC太阳电池的规模化生产提供了理论基础.实验结果表明,电阻率为3~5 Ω·cm、扩散方阻为70 Ω/□时,小批量生产的IBC太阳电池平
金属-有机框架(MOF)衍生的过渡金属硒化物和多孔碳纳米复合材料具有巨大的储能优势,是应用于电化学储能的优良电极材料.采用共沉淀法制备CoFe类普鲁士蓝(CoFe-PBA)纳米立方,并通过静电组装在CoFe-PBA上包覆聚吡咯(PPy)得到CoFe-PBA@PPy;通过在400℃氮气中退火并硒化成功制备了氮掺杂的碳(NC)包覆(CoFe) Se2的(CoFe) Se2@NC纳米复合材料,并对其结构和形貌进行了表征.以(CoFe) Se2@NC为电极制备了超级电容器,测试了其电化学性能,结果表明,在电流密度
针对金刚石氮空位(NV)色心量子传感器中微波天线体积大、无法与金刚石紧密接触造成天线与金刚石位置不固定、引起传感器灵敏度低的问题,设计了一种将微波天线集成到金刚石NV色心的一体化方法.采用导电性更强的金薄膜作为天线材料,通过高频结构模拟器(HFSS)仿真软件确定天线尺寸.利用微纳加工工艺和磁控溅射技术在金刚石NV色心表面制作了微波天线,实现了金刚石一体化微波天线.对金刚石一体化微波天线的仿真与实验数据进行对比分析.与传统微波天线相比,设计的天线体积缩小约50%,激发荧光效率和磁场灵敏度分别提升了约20倍和
为了减小正交耦合误差对硅微电子机械系统(MEMS)陀螺仪性能的影响,提高陀螺仪零偏精度,对MEMS陀螺仪正交耦合补偿技术进行研究.建立MEMS陀螺仪动力学模型,分析正交耦合产生的原因,介绍了各类正交耦合补偿机理.设计了一款可实现静电刚度补偿的MEMS陀螺仪,并利用绝缘体上硅(SOI)工艺进行制备.利用现场可编程门阵列(FPGA)实现陀螺仪静电刚度正交耦合闭环补偿,并对陀螺仪进行了测试.测试结果表明,MEMS陀螺仪经过静电刚度正交耦合补偿后,角度随机游走由0.023°/√h变为0.06°/√h,零偏不稳定性
以纳米压印技术为基础制备了具有纳米结构的聚二甲基硅氧烷(PDMS)薄膜.将纳米结构中间聚合物模板(IPS)薄膜覆盖在有PDMS溶液的玻璃基板上,真空加热后在玻璃基板上得到PDMS网格结构薄膜.这种方式得到的网格结构形状保持较好且厚度均匀无气泡,IPS薄膜不仅可以反复使用以减少Si母版的材料损耗,还可以缩短网格结构的制备时间.快速傅里叶变换(FFT)表明网格结构在可视角度下不存在角度依赖性.最后,利用时域有限差分(FDTD)对有无PDMS纳米结构的基板性能进行模拟,结合实验结果分析有无网格纳米结构对基板性能
采用水热法成功合成了CaMoO4/氧化石墨烯(GO)纳米复合材料.通过材料的表面形貌、晶体结构和电化学性能研究合成的纳米复合材料.结果 表明,CaMoO4/GO电极在电流密度0.5 A/g时比电容高达571.82 F/g,并且在1 A/g的电流密度下,经过1000次循环后的比电容保持率仍为84%.为了测试电极材料的实际应用效果,全固态超级电容器(ASC)分别使用CaMoO4/GO和活性炭(AC)作为正极和负极进行组装.组装的ASC在功率密度1710.3W/kg下显示出25.18W·h·kg-1的能量密度,
随着纳米技术和加工工艺的发展,纳米发电机被提出用于将自然界中微弱低频振动机械能转化为电能,进而为小型传感系统长续航工作提供可能.基于摩擦纳米发电机和压电纳米发电机的电荷积累与转移规律,设计了拱形结构并构建了摩擦-压电复合式能量采集器,将两种力-电转换模式有效整合,并突破了以往能量采集器只能收集垂直方向机械能的限制.搭建了测试系统,研究了能量采集器的输出性能.摩擦单元经过整流后的输出开路电压和输出短路电流分别可达60 V和1.25 μA,压电单元经过整流后的输出开路电压和输出短路电流分别为约10 V和约0.
通过有限元比较分析了不同分布式绕组结构对表贴式永磁电机性能的影响.依据对称三相分布式绕组的构成原则,总结了采用该绕组的电机在极槽配合方面需要满足的约束条件.在满足极槽配合约束的电机中选择了4台电机作为研究对象,并对具有不同分布式绕组结构的电机进行了电磁性能比较,包括气隙磁场、空载性能、负载性能、效率性能以及其它相关性能.根据理论与有限元分析结果总结出不同分布式绕组所具有的优缺点.在实际应用中,结合需求来选择最为合适的绕组结构.
采用原子层沉积(ALD)工艺在硅衬底上生长了35 nm以下不同厚度的超薄氮化铝(AlN)晶态薄膜.利用椭圆偏振光谱法在波长275~900 nm内测量并拟合薄膜的厚度及折射率和消光系数等光学参数.利用原子力显微镜(AFM)表征AlN晶粒尺寸随生长循环次数的变化,计算得到薄膜表面粗糙度并用于辅助椭偏模型拟合.针对ALD工艺特点建立合适的椭偏模型,可获得AlN超薄膜的生长速率为0.0535 nm/cycle,AlN超薄膜的折射率随着生长循环次数的增加而增大,并逐渐趋于稳定,薄膜厚度为6.88 nm时,其折射率为