【摘 要】
:
为提高支持向量机在大规模数据集上的训练效率,提出一种基于自适应协同聚类的支持向量预选算法。该方法通过对两类样本进行自适应协同聚类,寻找少量具有协同关系的类中心对,替代支持向量进行训练,从而减少参训样本数量。其中,中心对数量由算法自动确定。与其他支持向量预选算法的对比实验结果表明,自适应协同聚类算法能够在不影响分类性能的情况下,有效提高训练速度,是一种行之有效的快速支持向量预选算法。
【机 构】
:
第二炮兵工程学院502教研室,中国空气动力研究与发展中心,第二炮兵工程学院科研部,