论文部分内容阅读
针对不规则图像成分复杂、特征形状无法采用经典模型拟合等问题,提出了基于改进型脉冲耦合神经网络(PCNN)的自适应分割算法。该算法在原有PCNN模型基础上,对神经元反馈输入函数和动态阈值函数进行了修正,同时对神经元的输出采用多级输出模型,从而实现对不规则图像的分割。仿真实验表明,改进后的算法能够实现不规则图像的自适应分割,鲁棒性较好。