论文部分内容阅读
本文导出了粉体从应变为0(ε=0)到应变无穷大(ε=∞)时的压制总功: α_总=MW(1/d_o-1/d_m)Γ(m+1)式中,M是粉末压制模量,W是粉末的重量,d_o是粉末的原始密度,d_m是致密金属的理论密度,Γ(m+1)是m+1的Γ函数, Γ(m+1)=∫_0~ ∞e~(-ε)ε~mdεε是压制应变, ε=ln(d_m-d_o)d/(d_m-d)d_od是压坯密度,m是非线性指数。还导出了应变从ε_1到ε_2时实际的粉末压制功, α=∫_(ε_1)~(ε_2)e~(-ε)ε~mdε式中,∫_(ε_1)~(ε_2)e~(-ε)ε~mdε是m+1的不完全Γ函数,其函数值可由电子计算机近似求得。文中列表给出了钨粉压制功的计算实例。
In this paper, the total work of pressing is derived from the strain of 0 (ε = 0) to the strain of infinite (ε = ∞): α_Total = MW (1 / d_o -1 / d_m) Γ (m + 1) , M is the powder compaction modulus, W is the weight of the powder, d_o is the original density of the powder, d_m is the theoretical density of the compact metal, Γ (m + 1) is a Γ function of m + 1, ∫_0 ~ ∞e ~ (-ε) ε ~ mdεε is the compressive strain, ε = ln (d_m-d_o) d / (d_m-d) d_od is the density of the green compact and m is the nonlinear index. The actual powder compacting work is also derived from ε_1 to ε_2, where ε ∫ ε ε ε εε εε εεεεε εεε εε εε εε εε εε εε εε εε where -ε) ε ~ mdε is an incomplete Γ function of m + 1 whose function value can be approximated by electronic computer. The list gives a calculation example of tungsten powder compacting work.