论文部分内容阅读
如何从海量数据信息中挖掘出有用的关联规则已经成为人们广泛关注的问题,而在关联规则挖掘中,首要的问题就是如何高效地挖掘出频繁项集。针对已有FIMM算法作出改进,提出了一种改进的基于矩阵的频繁项集挖掘算法N—FIMM,该算法在FIMM基础上去除大量冗余的非频繁项集的项集,减少计算可能频繁项集的工作量,同时缩小了矩阵规模,提高了空间效率。通过对矩阵操作,一次性地产生所有的频繁项集。试验结果表明,该算法对已有的基于矩阵的频繁项集挖掘算法有了很大的改进,提高了挖掘效率。