论文部分内容阅读
A new equation of state is proposed to correlate the osmotic pressure data for aqueous lysozyme solutions with (NH 4) 2SO 4, (NH 4) 2C 2O 4 and (NH 4) 2HPO 4 at ionic strengths of 13.5 mol/kg and pH 4, 7 or 8 with only one adjustable parameter instead of the classical Derjaguin Landau Verwey Overbeek (DLVO) theory. The Carnahan Starling equation represents the contribution of the hard sphere repulsion to the osmotic pressure. The attractive dispersion interaction is represented by the Lennard Jones potential expressed by the equation of Cotterman et al. based on perturbation theory. The double layer repulsion interaction is represented by Yukawa potential expressed by the equation of state of Duh and Mier Y Teran based on mean spherical approximation. The total average relative deviation of the correlation of the osmotic pressure data is 1.68%.
A new equation of state is proposed to correlate the osmotic pressure data for aqueous lysozyme solutions with (NH 4) 2SO 4, (NH 4) 2C 2O 4 and (NH 4) 2HPO 4 at ionic strengths of 13.5 mol / kg and pH 4 The 7 or 8 with only one adjustable parameter instead of the classical Derjaguin Landau Verwey Overbeek (DLVO) theory. The Carnahan Starling equation represents the contribution of the hard sphere repulsion to the osmotic pressure. The attractive dispersion interaction is represented by the Lennard Jones potential expressed by the equation of Cotterman et al. based on perturbation theory. The double layer repulsion interaction is represented by Yukawa potential expressed by the equation of state of Duh and Mier Y Teran based on mean spherical approximation. The total average relative deviation of the correlation of the osmotic pressure data is 1.68%.