论文部分内容阅读
针对传统的非约束环境下人脸姿态估计方法无法在统一框架下很好地处理各种姿态相关和姿态无关因子等问题,设计了基于字典学习和稀疏表示的鲁棒性人脸姿态估计框架,提出一种新的基于鼻尖点高斯加权的人脸预处理方法.此外,为了提高字典的鉴别性,提出一种基于姿态相关和姿态不相关因子分析的鉴别字典学习算法.通过在公开的XJTU、Multi-PIE、CAS-PEAL-R1和AFLW人脸库实验,结果表明:该方法在具有光照、噪声和遮挡变化的人脸库上识别率均约达95%,基本可满足实际应用的要求.