论文部分内容阅读
本文以TensorFlow为框架搭建卷积神经网络,基于迁移学习的思想,以经典的手写数字识别作为引入,对不同代价函数和激活函数组合对卷积神经网络模型分类结果影响进行了评价分析。以HJ-1A/B渤海海冰图像为实验数据源,分析了不同函数组合对遥感海冰图像分类的影响,优选出交叉熵代价函数与ReLU激活函数为最佳的组合,证明了卷积神经网络在遥感海冰分类中的应用可行性。对渤海海冰图像分类结果进行验证,其中带标签样本验证精度为98.4%。使用该模型对无标签的测试样本进行识别,讨论了样本的窗口尺寸对海冰分类结果的影