论文部分内容阅读
从曲线演化的角度提出一种基于贝叶斯(Bayesian)区域统计和区域竞争的自适应变分图像分割模型,该模型使用水平集描述曲线和区域,得到基于Bayesian区域统计信息的能量函数,利用区域竞争曲线演化模型推导出一种快速曲线演化偏微分方程,实现了图像分割。该方法可以同时提取出多类目标,算法具有快速、分割精度高的特点,且易于综合纹理、形状等多种信息对模型进行扩充。此外,能量函数和曲线演化方程是相对独立的,对于不同类型的图像可选用不同的概率模型。实验表明,该方法是一种快速、有效、新颖的图像分割方法。