论文部分内容阅读
Phosphorylated mesoporous carbons (PMCs) were investigated as catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). The acidic PMCs show better selectivity to HMF compared to sulfonated carbon catalyst (SC) despite lower activity. The concentration of P-O groups on the PMC was correlated with the activity/selectivity of the catalysts; the higher the P-O concentration, the higher the activity. However, the higher the P-O content, the lower the selectivity to HMF. Indeed, a lower concentration of the P-O groups minimized the degradation of HMF to levulinic acid and the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines and water insoluble by-products derived from the dehydration of fructose which blocked the catalytically active sites.
Phosphorylated mesoporous carbons (PMCs) were investigated as catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). The acidic PMCs show better selectivity to HMF compared to sulfonated carbon catalysts (SC) despite lower activity. The concentration of PO groups on the PMC was correlated with the activity / selectivity of the catalysts; the higher the PO concentration, the higher the activity. However, the higher the PO content, the lower the selectivity to HMF. to levulinic acid and the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines and water insoluble by-products derived from the dehydration of fructose which blocked the catalytically active sites.