论文部分内容阅读
为快速测定森林土壤的有机碳含量,从取自小兴安岭带岭林业局东方红林场的120个土壤样品中采集350~2500 nm的土壤近红外光谱数据,对光谱做一定的预处理后,运用主成分分析法压缩提取前8个主成分,结合BP神经网络非线性方法建立土壤有机碳含量的预测模型并进行验证。结果表明,验证集的相关系数为0.78002,均方根误差为0.5002,预测集的相关系数为0.84941,均方根误差为0.4538。应用近红外光谱技术及BP神经网络非线性方法建模可以有效地预测土壤的有机碳含量,为野外大面积快速测定森林土壤碳含量提供了技术依据。