论文部分内容阅读
非负稀疏编码(Nonnegative sparse coding,NSC)己成功应用在很多领域的研究中.目前使用的NSC算法通过梯度投影法和基于辅助函数的乘性更新法相结合来实现,其性能受迭代步长的影响很大,且效率较低.为增强NSC的可应用性,本文通过对一组凸超抛物面函数做交替最小化米实现NSC,并依据凸超抛物面特性、点到非负数集合的投影规则以及点到原点处单位超球的投影规则构造了一个无用户定义优化参数的稳定高效的NSC算法—SENSC.从数学角度,文中推断了,SENSC比现有算法高效且它的解优于当前算