论文部分内容阅读
红外热成像测温是及时发现电缆附件异常发热缺陷的重要方法,但面对海量巡检图像,传统的人工诊断方式费时费力,且过分依赖人工经验。已有研究中为了实现电气设备红外图像的智能诊断,大多提取特定特征量作为所搭建神经网络模型的输入,而所提取的特征量也依赖于人工选择。为此,提出了一种基于Faster RCNN(faster regions with convolutional neural networks features)与Mean-Shift的电缆附件缺陷红外图像自动诊断方法。该方法首先基于Faster RC