【摘 要】
:
The wide use of manganese dioxide (MnO2) as an electrode in all-solid-state asymmetric supercapacitors(ASCs) remains challenging because of its low electrical conductivity.This complication can be circum-vented by introducing trivalent gadolinium (Gd) ion
【机 构】
:
Department of Convergence Engineering Technology,Jeonbuk National University,Jeonju Jeollabuk-do 548
论文部分内容阅读
The wide use of manganese dioxide (MnO2) as an electrode in all-solid-state asymmetric supercapacitors(ASCs) remains challenging because of its low electrical conductivity.This complication can be circum-vented by introducing trivalent gadolinium (Gd) ions into the MnO2.Herein,we describe the successful hydrothermal synthesis of crystalline Gd-doped MnO2 nanorods with Ni(OH)2 nanosheets as cathode,which we combined with Fe3O4/GO nanospheres as anode for all-solid-state ASCs.Electrochemical tests demonstrate that Gd doping significantly affected the electrochemical activities of the MnO2,which was further enhanced by introducing Ni(OH)2.The GdMnO2/Ni(OH)2 electrode offers sufficient surface elec-trochemical activity and exhibits excellent specific capacity of 121.8 mA h g-1 at 1 A g-1,appealing rate performance,and ultralong lifetime stability (99.3% retention after 10,000 discharge tests).Furthermore,the GdMnO2/Ni(OH)2//PVA/KOH//Fe3O4/GO solid-state ASC device offers an impressive specific energy density (60.25 W h kg-1) at a high power density (2332 W kg-1).This investigation thus shows its large potential in developing novel approaches to energy storage devices.
其他文献
By virtue of the crucial effect of the crystal structure and transition metal (TM) redox evolution on the performance of LiNixCoyMnzO2 (NCM) cathode,systematical investigation is carried out to better under-stand the charge mechanism upon deep charging.Ba
The electrolyte is an essential component of a battery system since it is responsible for the conduction of ions between the electrodes.In the quest for cheaper alternatives to common organic electrolytes for lithium-ion batteries (LIB),we formulated hybr
Metal organic frameworks (MOFs) have been extensively investigated in Li-S batteries owing to high sur-face area,adjustable structures and abundant catalytic sites.Nevertheless,the insulating nature of tradi-tional MOFs render retarded kinetics of polysul
Anionic redox reaction (ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deli-ver a high ARR-related capacity with small voltage hys
The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction (OER and HER) is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofibers (CNFs) composite was successful
Electroreduction of CO2 into formate catalyzed by metal-organic frameworks (MOFs) is a promising ave-nue to promote the carbon cycle,but the oxygen evolution reaction (OER) process in anode usually lim-ited the reaction efficiency.Here,a new framework {(M
Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn nanoparticles uniformly embedded in N-
Sodium-ion capacitors (SICs) have attracted appreciable attention in virtue of the higher energy and power densities compared with their rivals,supercapacitors and sodium-ion batteries.Due to the lack of sodium resources in cathode,presodiation is critica
Electrochemical nitrogen reduction reaction (e-NRR) under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia (NH3) synthesis.However,the e-NRR perform
Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an impor-tant and challenging goal for identifying the structure and nature of active site in many industrial pro-cesses such as Fischer-Tropsch chemistry and a