论文部分内容阅读
通过在160 keV,4μA/cm~2的条件下,注入剂量为0.5×10~(16)~6×10~(16)ions/cm~2的过渡金属离子(Cr~+,Mn~+和Fe~+),以改变高纯二氧化硅的表面和近表面区域的光学和磁学特性。由背散射技术测得注入离子的分布呈高斯型,其峰值出现在距表面0.12μm处,半高宽(FWHM)为0.14μm。在5.0 eV和5.8 eV处,能分辨出由辐照损伤所引起并迭加到光学吸收带低能尾部的吸收带。离子改性区的折射率用椭率测量技术测定,它随注入剂量的增加而增大。对于注入剂量为6×10~(16)ions/cm~2的试样,其折射率随注入离子的原子量的增加而增大。离子注入试样的电子顺磁共振(EPR)谱与温度及方向的关系表明,它们的磁特性差别很大,而且是过渡金属离子种类的函数。室温下,注入剂量为6×10~(16)ions/cm~2的试样的EPR谱表明,注入的Fe离子引起的信号比Mn离子的信号大约强40倍,但没有观察到注入的Cr离子的信号。EPR谱说明离子改性的表面区包含混合磁相。综述的数据说明,将过渡金属离子注入非晶二氧化硅制成的是新型材料。离子改性区的特性是现有数据和理论所没有预见到的。
By injecting transition metal ions (Cr ~ +, Mn ~ +) at a dose of 0.5 × 10 ~ (16) ~ 6 × 10 ~ (16) ions / cm ~ 2 under the condition of 160 keV, 4μA / cm ~ Fe ~ +) to change the optical and magnetic properties of the surface and near-surface region of high purity silica. The distribution of the implanted ions was Gaussian by backscattering technique. The peak appeared at 0.12μm from the surface, and the full width at half maximum (FWHM) was 0.14μm. At 5.0 eV and 5.8 eV, the absorption band caused by the irradiation damage and superimposed on the low-energy tail of the optical absorption band can be discerned. The refractive index of the ion-modified zone is determined by ellipsometry, which increases with increasing dose. The refractive index increases with the increase of the atomic weight of implanted ions for a sample implanted at a dose of 6 × 10 ~ (16) ions / cm ~ 2. The relationship between the electron paramagnetic resonance (EPR) spectra and temperature and orientation of the ion-implanted samples shows that their magnetic properties vary greatly and are a function of the species of transition metal ions. The EPR spectra of the samples injected at a dose of 6x10 ~ (16) ions / cm ~ 2 at room temperature showed that the injected Fe ions induced a signal about 40 times stronger than that of the Mn ions but no implanted Cr Ion signal. EPR spectra indicate that the ionically modified surface region contains a mixed magnetic phase. Summarized data shows that the transition metal ions into amorphous silicon dioxide is a new material. The characteristics of the ion-modified zone are not foreseen by available data and theory.