论文部分内容阅读
Aim: To elucidate the role of scaffold protein postsynaptic density (PSD)-95 in the dopamine D1 receptor (D1R)-modulated NR 1a/NR2B receptor response.Methods: The human embryonic kidney 293 cells expressing D1R (tagged with the enhanced yellow fluorescent protein) and NR1a/NR2B with or without co-expres-sion of PSD-95 were used in the experiments. The Ca2+ influx measured by imaging technique was employed to monitor N-methyl-D-aspartic acid receptors (NMDAR) function.Results: The application of dopamine (DA, 100 μmol/L) did not alter glutamate/glycine (Glu/Gly)-induced NMDAR-mediated Ca2+ influx in cells only expressing the D1R/NR1a/NR2B receptor. However, DA increased Glu/Gly-induced Ca2+ influx in a concentration-dependent manner while the cells were co-expressed with PSD-95. D1.R-stimulated Ca2+ influx was inhibited by a selective DIR antagonist SCH23390. Moreover, pre-incubation with either the protein kinase A (PKA) inhibitor H89, or the protein kinase C (PKC) inhibitor chelerythrine attenuated D1R-enhanced Ca2+ influx induced by the N-methyl-D-aspartie acid (NMDA) agonist. The results clearly indicate that D1R-modulated NR1a/NR2B receptor function depends on PSD-95 and is subjected to the regulation of PKA and PKC.Conclusion: The present study provides the fast evidence that PSD-95 is essential in D iR-regulated NR1a/NR2B receptor function.