论文部分内容阅读
在反演谱分解问题中,一个核心内容是如何寻求最优解,得到最优解首先得构建一个合适的数学模型,本文采用带有L1规则化的L2范数约束反演谱分解的目标函数.由于优化算法的选择关系到反演谱分解的精度、计算成本等问题,因此研究首先分析了L1范数的规则化系数λ对反演谱分解效果的影响,然后在此基础优选了L-BFGS算法作为反演谱分解中的优化算法.为了验证L-BFGS优化算法在反演谱分解中的有效性,本文进行了理论分析与数值模拟分析,并在某海上油田实际数据中对基于L-BFGS优化算法的反演谱分解技术进行了验证.实际数据处理结果表明,基于L-BFGS优化算法的反演谱分解技术对油气的响应十分敏感,而且结果比较稳定.
In the inversion of spectral decomposition, one of the core contents is how to find the optimal solution. First, an appropriate mathematical model must be constructed to obtain the optimal solution. In this paper, the objective function of spectral decomposition with L2 regularization with L1 regularization is inversed .Because the choice of optimization algorithm is related to the precision of inversion spectrum decomposition and calculation cost, the research firstly analyzes the effect of regularization coefficient λ of L1 norm on the effect of inversion spectral decomposition, and then optimizes the L- BFGS algorithm as an optimization algorithm in the inversion of spectral decomposition.In order to verify the effectiveness of the L-BFGS algorithm in the inversion of spectral decomposition, theoretical analysis and numerical simulation are carried out in this paper. In the actual data of an offshore oilfield, -BFGS optimization algorithm is validated.The practical data processing results show that the inversion spectral decomposition technique based on L-BFGS algorithm is very sensitive to the response of oil and gas, and the result is stable.