论文部分内容阅读
Following our preceding work,we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L = 4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum.We solve the 2D bounce-averaged Fokker-Planck equation by allowing incorporation of cross diffusion rates.Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles,and enhance the phase space density for energies of about 1MeV by a factor of 102 or above in about one day,consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.Moreover,neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day,with larger errors at smaller pitch angle,suggesting that cross diffusion also plays an important role in wave-particle interaction.