论文部分内容阅读
非负矩阵部分联合分解(Nonnegative matrix partial co-factorization,NMPCF)将指定源频谱作为边信息参与混合信号频谱的联合分解,以帮助确定指定源的基向量进而提高信号分离性能.卷积非负矩阵分解(Convolutive nonnegative matrix factorization,CNMF)采用卷积基分解的方法进行矩阵分解,在单声道语音分离方面取得较好的效果.为了实现强噪声条件下的语音分离,本文结合以上两种算法的优势,提出一种基于卷积非负矩阵部分联合分解(Con