论文部分内容阅读
介绍了一种用于时空模式识别的综合神经网络模型,称为TS-LM-SOFM.该网络的顶层是一种称为TS(temporalsequence)的单层时序识别网络,可以把时序模式转换成抽象的空间模式.该网络的底层是SOFM(自组织特征映射网络),用于空间模式特征检测.LM(学习矩阵)用于上述两层的联接.在实验中,用移动机器人超声阵列传感器作为输入训练,结果表明,该神经网络输出的模式能够较好地抽象表示输入信号的时空特征.