Exact parametric representations of orbits defined by cubic Hamiltonian

来源 :上海师范大学学报·自然科学版 | 被引量 : 0次 | 上传用户:ffanhaixin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Abstract: In this paper,we show that for any given planar cubic algebraic curves defined by a quadratic Hamiltonian vector field,we can always have their exact explicit parametric representations.We use a model of microstructured solid to show an application of our conclusions.
  Key words: cubic algebraic curve; planar quadratic Hamiltonian system; exact solution; traveling wave; model of microstructured solid
  CLC number: O 241.8, O 152.5 Document code: A
  Article ID: 10005137(2014)05045608
  2010 Mathematics Subject Classification: 14H50, 34C25, 35Q72
  Received date: 20140330
  Foundation item: Supported by the National Natural Science Foundation of China(11471289,11162020)
  Corresponding author: Jibin Li,Professor,Email:lijb@zjnu.cn; jibinli@gmail.com1 Introduction
  We are interested in the study of planar vector fields because they occur very often in applications.Indeed,such equations appear in modelling chemical reactions,population dynamics,travelling wave systems of nonlinear evolution equations in mathematical physics and in many other areas of applied mathematics and mechanics.
  It is known that a planar quadratic Hamiltonian vector fielddxdt=Fy, dydt=-Fx
  (1)defines a family of cubic algebraic (2)For every given real number h,the curves defined by F(x,y)=0 are called the level curves or the orbits of system (1).
  Can we have the exact explicit parametric representation x=x(t),y=y(t) for a given cubic curve? This is an interesting problem.In fact,for a given nonlinear wave equation,if its corresponding traveling wave system is a planar quadratic integrable system,to obtain exact traveling wave solutions,we need to solve the above problem.
  In this paper,we show that for any given planar cubic algebraic curves,we can always have their exact explicit parametric representations.To obtain this conclusion,we first introduce the classification of cubic curves given by Newton and a method that makes a general cubic curves become corresponding classification types.Second,for the (A)-type curves,we show that it is easy to get the exact explicit parametric representations.In section 3,we use the normal form given by Horozov & Iliev[1] to prove that any cubic curves defined by a quadratic Hamiltonian system can get their exact explicit parametric representations.As an example,we discuss the traveling wave solutions for a model of microstructured solid.We give the formulas,for which we can obtain the exact explicit parametric representations of the traveling wave solutions.   2 Preliminary:cubic algebraic curves
  In 1704,Newton classified the cubic algebraic curves of the form(2) into the following four types[2-3]:(A) Cubic curves with more branches(at most three):xy2+ey=ax3+bx2+cx+d.
  (B) Parabolichyperbolic curves(two branches):xy=ax3+bx2+cx+d.
  (C) Divergent parabola(one or two branches):y2=ax3+bx2+cx+d.
  (D) Cubic parabola(one branch):y=ax3+bx2+cx+d. Question 1 How to make form(2) become one of the above four types?
  We write that f3(x,y)=Ax3+3Bx2y+3Cxy2+Dy3, f2(x,y)=3Ex2+6Fxy+3Gy2 , f1(x,y)=Hx+Iy.
  4 An example of application:exact travelling wave solutions for the model of microstructured solids
  Microstructured materials like alloys,crystallites,ceramics,functionally graded materials,etc.,have gained wide applications.There are a lot of modelling of wave propagation in such materials[4-6].In[7],the author presented a mathematical model for longitudinal waves in the 1D setting which describes nonlinear wave motion in microstructured solids.The governing system is the following:ρ0utt=auxx+Nuxuxx+AΨx, IΨtt=CΨxx+MΨxΨxx-Aux-BΨ,
  (14)where u denotes the longitudinal(macro)displacement and Ψ is the microdeformation (according to the Mindlin mode) or the internal variable (according to the concept of internal variables).Further,ρ0 is the density and I inertia of the microstructure,while,a,A,B,C,N,M are the material parameters specifying the free energy function.After introducing the dimensionless variables U,X,T and applying the “slaving principle”,system(14) is reduced to one equation[8]:UTT=1-cA2c02UXX+12kN(UX2)X+cA2cB2UTT-c21c20UXXXX+12KM(UXX2)XX,
  (15) where c0,c1,cA,cB are velocities and kN,kM are the parameters expressing the strengths of physical nonlinearities on macroand microscale,respectively.
  References:
  [1] E. Horozov,D. Iliev.On the number of limit cycles in perturbations of quadratic Hamiltonian systems[J].Proc. London Math. Soc.,1994,69(3):198-224.
  [2] S. B. Mulay.Classification of plane cubic curves,Advances in commutative ring theory(fez,1997),461-482,Lecture Notice in Pure and Appl. Math.,Dekker,New York,1999,205.
  [3] A. S. Smogorzhevskii,E. S. Stolova,Handbook on the theory of planar curves of the third order[M].Moscow:Fizmatgiz,1961.
  [4] A. C. Eringgen.Microcontinuum Field Theories.I Foundations and Solids[M].New York:Springer,1999.
  [5] R. Phillips.Crystal,Defects and Microstructures.Modelling Across Scales,Cambridge University Press,Combridge,2001.
  [6] S. Suresh,A. Mortensen.Fundamentals of Functionally Graded Materials[M].London:IOM Comm. Ltd.
  [7] J. Engelbrecht.Nonlinear wave motion and complexity[J].Proceedings of the Estonian Academy of Sciences,2010,59(2):66-71.
  [8] J. Janno,J. Engelbrecht.Solitary waves in nonlinear microstructured materials[J].J. Phys. A.:Math Gen,2005,38:5159-5172.
  [9] J. B. Li,G. R. Chen.Exact travelling wave solutions and their bifurcations for the model of microstructured solids[J].Int. J. Bifurcation and Chaos,2013,23(1),1350009.
  (Zhenzhen Feng)
其他文献
针对传统流形学习方法难以处理大批量设备运行数据的特点,提出了一种采用增量式流形学习方法的机械设备状态监测方法.该方法首先利用局部切空间排列算法对训练样本集进行非线性
基于磁性纳米粒子的磁化学传感器是集纳米/微米技术、化学反应、生物技术及核磁共振技术于一体的多学科交叉、多技术集成的传感器.利用这一传感器可以检测各种金属离子、蛋白
针对聚类分析常面临的维数灾难和噪声污染问题,将样本加权思想与子空间聚类算法相结合,提出了一种鲁棒的子空间聚类算法.该算法结合现有子空间聚类方法,为每个类簇计算一个反
提出了一种适用于配电网重构的动态调整策略,将其与整数粒子群优化算法相结合,实现了高效的配电网重构.动态调整策略分为问题变量解空间动态调整策略和粒子位置变量截断方式
讨论带有Born-Infeld作用量的快子场所驱动的暴涨模型.首先给出了快子暴涨方程的Hamilton-Jacobi形式并且考虑如何去解Hamilton-Jacobi方程;然后讨论快子场的宇宙学扰动给出
目的探讨小檗碱对糖尿病肾病大鼠肾小球系膜细胞增殖和分泌TGF-β1的影响。方法分离培养糖尿病肾病大鼠肾小球系膜细胞,用MTT法检测系膜细胞的增殖能力,ELISA法测定系膜细胞分
单增李斯特菌(Listeria monocytogenes)是全世界普遍公认一种重要的人畜共患食源性致病菌,其广泛存在于各种乳制品、蔬菜、肉类等食品中,对人的健康安全造成了极大的威胁.因此,如何有效地检测出单增李斯特菌的存在是食源性疾病预防与控制的关键环节.介绍了单增李斯特菌的传统检测方法以及各种快速检测方法(免疫学方法、生物传感器、基于噬菌体检测方法和分子生物学方法).
利用菠菜和烟草的硫氧还蛋白f(Trx-f)在不同氧化还原状态下测定了菠菜、拟南芥、烟草和番茄Rubisco活化酶(RCA)活化其Rubisco的活力,实验结果显示菠菜Trx-f只能介导调控菠菜和拟
针对现有主动访问控制模型中授权流与工作流同步粒度不够精细的问题,提出一种任务状态敏感的访问控制模型.根据任务实例的不同状态对多个执行角色进行差异化授权,施加相应的