论文部分内容阅读
本文在分析了模糊神经网络(FNN)控制器的工作原理及设计方法的基础上,提出了一种采用遗传算法优化设计水轮发电机模糊神经网络励磁控制器的方法.其基本过程是利用遗传算法得到初始模糊控制规则,并对初始规则进行过滤,在此基础上利用遗传算法结合模拟退火对得到的模糊神经网络进行训练.仿真结果表明:与根据专家经验获得模糊规则和BP算法进行学习的常规FNN比较,采用遗传算法优化设计的模糊神经网络励磁控制器所构成的励磁系统具有更好的动态性能.