论文部分内容阅读
针对茶叶品质感官审评存在的缺陷,基于茶评师审评结果,采用计算机视觉技术快速评价茶叶叶底感官品质。以碧螺春茶为研究对象,采用引导滤波方法去除茶叶叶底图像的镜面反射等噪声信息,提取图像的颜色和纹理特征,利用连续投影算法(SPA)优选特征变量,建立茶叶叶底感官品质的SVM量化分析模型,并与PLS模型性能比较。结果表明,引导滤波方法能很好地去除叶底图像的镜面反射及边缘模糊等噪音信息;优选的9个特征变量与感官审评标准中叶底品质感官审评术语描述相一致;所建SVM模型性能好于PLS,模型对预测集的RP为0.92,