论文部分内容阅读
为降低对合法邮件的误判,提出一种基于朴素贝叶斯和层次聚类的两阶段垃圾邮件过滤方法。该方法将邮件划分为“合法邮件”、“可疑邮件”和“垃圾邮件”3类,在第一阶段,利用朴素贝叶斯算法速度快、分类性能好的优点,对邮件进行初步分类;在第二阶段,基于垃圾邮件的发送特征,利用层次聚类算法进行相似性比较。实验表明,该方法能够显著提高垃圾邮件的查准率,降低对合法邮件的误判,更加符合实际应用需求。