Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performan

来源 :能源化学 | 被引量 : 0次 | 上传用户:laiyongxuan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Flower-like hierarchical three-dimensional NiFe layered double hydroxides hollow microspheres (3D NiFe-LDH HMS), as one kind of novel non-noble metal electrocatalysts, have been fabricated in a template-free route for water oxidation. Both of the concentration of ammonium fluoride and the reaction time are adjusted to obtain a series of NiFe-LDH microspheres, with different internal structures from mas-sive to hollow generated during the hydrothermal treatment, which improve the electrocatalytic activ-ity of the NiFe-LDH catalysts towards the evolution reaction of oxygen. The optimized NiFe-LDH-0.4M HMS show the excellent OER performance in alkaline electrolyte with η = 290 mV@10 mA cm 2 , and a Tafel slope of 51 mV dec 1 , which outperforms the benchmark RuO2 catalyst. The possible reason is at-tributed to the more exposure of active sites, and fast ion transport resulting from the hierarchical hollow structure.
其他文献
Adsorption state of catalyst on photoanode is an important factor on influencing the performance of dye-sensitized photoelectrochemical cells (DS-PECs) for water splitting.Photoanode TiO2(1 + 2) was assembled with Ru(bpy)3 phosphoric acid derivative (comp
Oxygen evolution reaction (OER) is a key process for electrochemical water splitting due to its intrinsic large overpotential. Recently, layered double hydroxides (LDHs), especially NiFe-LDH, have been regarded as highly performed electrocatalysts for OER
Organic-inorganic halide perovskites have attracted huge attentions as the novel photoelectric function materials.So far,perovskite solar cells (PSCs) with prominent performance are still based on the lead halide perovskites,although they are potentially
The electrolyte is one of the most important components of vanadium redox flow battery (VRFB), and its stability and solubility determines the energy density of a VRFB.The performance of current positive electrolyte is limited by the low stability of VO2+
Although Si-based nanomaterials provide incomparable lithium ion storage ability in theory,it suffers from low initial Coulombic efficiency,electrical disconnection,and fracture due to huge volume changes after extended cycles.As a result,it leads to a se
Over the past decades,two-dimensional (2D) nanomaterials possessing planar layered architecture and unique electronic structures have been being quickly developed,due to their wide potential application in the fields of chemistry,physics,and materials sci
A facile one-pot synthesis of solid polymer electrolytes (SPEs),composed of carbonate terminated poly(ethylene glycol) (CH3O-PEG-IC),poly(ethylene glycol)-block-polystyrene (PEG-b-PS) block copolymer nanoparticles containing a conductive PEG corona,fumed
With wide application of electric vehicles and large-scale in energy storage systems,the requirement of secondary batteries with higher power density and better safety gets urgent.Owing to the merits of high theoretical capacity,relatively low cost and su
Single-atom catalysts (SACs) supported on two-dimensional (2D) materials are highly attractive for maximizing their catalytic activity.However,graphene based SACs are primarily bonded with nitrogen and carbon sites,resulting in poor performance for the ox
Two dimensional halide perovskites are emerging as attractive electroluminescent materials for developing high-performance light-emitting devices owing to their unique structures and/or superior optoelectronic properties.This review begins with an introdu