【摘 要】
:
本文主要研究了Cu取代和退火等因素对全过渡族Mn50Ni32-xCuxCo8Ti10 (x=1,2)合金条带马氏体相变行为和磁热性能的影响.研究发现,Cu取代后,合金马氏体相变温度往低温方向移动,且对Cu含量非常敏感;同时奥氏体铁磁性增强,导致相变前后磁化强度突变增大;发生明显的磁场驱动变磁性马氏体相变;磁熵变随着Cu含量的增加而逐渐增大,尤其是有效制冷能力相对于Cu取代前样品成倍增大.本文以x=1样品研究了退火对马氏体相交的影响,退火后,合金马氏体相变变得缓慢,奥氏体铁磁性减弱,相变前后磁化强度突变减小
【机 构】
:
江西理工大学稀土学院,江西省稀土磁性材料与器件重点实验室/江西理工大学稀土磁性材料与器件研究所,赣州341000;江西理工大学材料冶金化学学部,材料科学与工程学院,赣州341000;江西理工大学稀土学
论文部分内容阅读
本文主要研究了Cu取代和退火等因素对全过渡族Mn50Ni32-xCuxCo8Ti10 (x=1,2)合金条带马氏体相变行为和磁热性能的影响.研究发现,Cu取代后,合金马氏体相变温度往低温方向移动,且对Cu含量非常敏感;同时奥氏体铁磁性增强,导致相变前后磁化强度突变增大;发生明显的磁场驱动变磁性马氏体相变;磁熵变随着Cu含量的增加而逐渐增大,尤其是有效制冷能力相对于Cu取代前样品成倍增大.本文以x=1样品研究了退火对马氏体相交的影响,退火后,合金马氏体相变变得缓慢,奥氏体铁磁性减弱,相变前后磁化强度突变减小,磁场驱动变磁性变弱,由此导致磁熵变大幅度减小,但由于制冷温区成倍增大,致使有效制冷能力几乎不减小.本文从过渡元素取代导致3d电子之间相互作用的改变和退火导致γ相的析出分别讨论了Cu取代和退火影响合金马氏体相变的物理机制.
其他文献
太赫兹波探测技术在天文、国防、安检以及生物等领域发挥着越来越重要的作用.随着技术的发展,太赫兹探测器的灵敏度在不断提高,目前已经发展到单光子探测水平.在太赫兹频段,由于光子能量低,传输损耗较大,太赫兹单光子探测器的研制开发面临极大的技术挑战.本文首先介绍了太赫兹单光子探测器的基本原理、主要指标和测试系统并提出了实现太赫兹单光子探测的基本要求.然后,介绍了几种常见的太赫兹单光子探测器,包括半导体量子
Ouzo效应是一种自发乳化现象,被广泛应用于化工、生物医药以及新材料制备等多个领域.为探究声场和无容器条件对Ouzo效应的影响机制,本文将Ouzo转变与声悬浮过程相结合,通过蒸发和液滴凝并两种不同的方式引发声悬浮液滴中的Ouzo效应,对比研究玻璃基底和声悬浮无容器条件下的Ouzo效应及其动力学过程.研究发现,液滴的蒸发会诱发Ouzo相变与微滴形核,微液滴的长大过程主要由扩散主导.声悬浮条件下,液滴
采用紧耦合气雾化法制备Fe-Cr合金粉末,分别研究了雾化压力和过热度对粉末粒度分布和表面形貌的影响.结果 表明,在其他工艺参数不变的情况下,随着雾化压力从3.0 MPa增加到3.4 MPa、3.8 MPa时,细粉收得率升高,粉末中位粒径减小,气压增大则对液柱的破碎能力增强;当雾化压力从3.8 MPa增加到4.2 MPa时,粗粉收得率提高,中位粒径增加,小颗粒粉末团聚或粘结形成大颗粒粉末;过热度的增加提高了雾化过程的稳定性,钢液黏度降低、流动性提高,粉末中位粒径减小,细粉收得率提高;过热度增加到300℃时,
基于分步傅里叶法研究了饱和非线性介质中艾里光束与孤子的交互作用.仿真结果表明,单艾里光束与孤子作用时,可通过调节艾里光束与孤子的初始强度比、光束初始间隔及相位差控制交互作用后光波的传播模式.弱能量艾里光束与孤子碰撞后会形成峰值强度呈阻尼振荡的呼吸孤子,而同相位时,强能量艾里光束与孤子碰撞后会使呼吸孤子的峰值强度位置左移;反相位时,则会产生峰值强度不等且存在一定夹角的孤子对.双艾里光束与孤子作用时,可通过调节三光束间的初始间隔和相位差调整呼吸孤子的平均峰值强度,且艾里光束主瓣及旁瓣会随双艾里光束与孤子初始振
采用激光选区熔化技术成功制备了Ti6Al4V-10%B4C复合材料,通过对比不同激光体能量密度下复合材料成形面的粗糙度及致密度,揭示了能量密度对复合材料成形质量的影响规律.结果 表明:随着激光体能量密度的增加,复合材料成形面的粗糙度先减小后增大,当激光体能量密度为66.67 J/mm3时,成形面的粗糙度最小;粗糙的成形面不利于铺粉时粉末的铺展,导致复合材料的致密度下降.进一步对复合材料的微观组织与显微硬度进行分析,结果发现,SLM过程中Ti与B4C发生原位反应,生成物有TiB2与TiC,且它们主要以联生组
颗粒污染物是高功率激光装置光学元件损伤的诱因之一,掌握污染物产生规律是解决污染诱致损伤问题的基础.针对本色氧化工艺处理前后的5052铝合金样品,研究了激光辐照样品诱致亚微米和微米尺寸气溶胶颗粒的产生规律,分析了激光能量密度、脉冲数目、激光光斑直径、表面粗糙度等参数对颗粒物数量的影响.结果 表明:颗粒物数量和激光光斑面积呈正相关;激光能量密度低于烧蚀阈值时,颗粒物产生于第一个脉冲辐照过程,高于烧蚀阈值时,表面颗粒物数量随着激光能量密度增加而逐渐增加;随着激光脉冲数目的 增加,本色氧化5052样品产生颗粒物的
在~6Li冷原子系综中,本团队发展了弱探测光和强本地光差拍探测的技术,在极低探测光功率密度的条件下(<10~(-3)饱和光强),实现了达到光子散粒噪声极限的光谱测量.基于高精度光学频率梳的频率稳定性传递链,将探测光锁到光梳上,精确测量了~6Li原子的D线跃迁频率,得到不确定度优于1 k Hz的~6Li D_1线跃迁的绝对频率,比当前最高精度的测量提高了一个量级.2P能级精细结构劈裂和2P_(1/2
基于表面等离子体的硅基集成光电探测器因具有THz带宽潜力而受到广泛关注.本文基于简化的两步光刻工艺实现表面等离子体狭缝波导与石墨烯相结合的光电导探测器,直接采用对称的狭缝波导金属作为微波电极,理论计算3-dB带宽大于120 GHz,受限于测试设备,实际测试的带宽大于70 GHz,实验上实现了72 Gbit/s NRZ和64 Gbit/s PAM-4等高速信号的接收,误码率均低于15%的软判决前向纠
冷原子是利用激光制冷、蒸发制冷等冷却手段将原子制备到接近绝对零度的状态.作为当前量子物理的一个重要国际前沿,冷原子物理已经发展到探索、研究、测量原子内部的自旋自由度.对其内部自旋自由度的超精细结构所呈现的丰富量子磁性的精密测量,无论是对基础物理,或是新技术的运用,无疑都有着非常重要的作用.而借助于微重力环境的优势,创造新的极端条件,冷原子实验系统可获得地面无法达到的pK量级的超低温以及长时间的精密
中低温区磁制冷材料可用于液氧、液氮、液氢、液氦等资源的获得因而引起人们的关注,探索并获得具有大磁熵变、宽制冷温跨、大制冷能力以及大绝热温变的磁制冷材料是科研人员持续不断的追求.稀土-镓是一类磁相变信息丰富的稀土基合金化合物,本文综述了镨-镓、钕-镓、钐-镓、钆-镓、铽-镓、镝-镓、钬-镓、铒-镓、铥-镓以及钆铒互替代样品的低温有序-有序磁相变、高温有序-无序磁相变以及磁熵变结果.稀土-镓化合物的低