论文部分内容阅读
研究了铁矿石烧结性能的评价指标及其主要影响因素, 提出了误差修正的带动量项的线性再励自适应变步长BP神经网络算法, 建立了铁矿石烧结性能预报模型. 模型预报结果表明, 用拓扑结构为12-34-4的BP神经网络训练6 700次后, 神经网络训练误差为0.000 187, 模型预报命中率均达83.5%以上, 模型具有很好的泛化能力和自适应能力.