论文部分内容阅读
建立了铅酸蓄电池充电过程中SOC的神经网络预测模型,采用平均影响值(MIV)算法对预测模型的输入变量进行了分析和筛选。在MIV算法的基础上,比较了基于遗传算法优化的BP神经网络(MIV-GA-BP)与传统MIV-BP神经网络对蓄电池充电过程中SOC的预测误差。测试样本的验证结果表明,MIV-GA-BP神经网络模型对蓄电池充电过程的SOC预测精度更优。