论文部分内容阅读
通过研究延迟微分方程隐-显式线性多步法的稳定性,给出两类特殊的隐-显式方法即隐-显式Euler方法和隐-显式BDF方法的稳定性结论,证明了隐-显式Euler方法是P-稳定的,隐-显式BDF方法不是P-稳定的。为了克服边界轨迹法刻画复空间稳定区域的困难,给出了一种新的复空间上稳定区域的刻画方法,并用这种方法给出了隐-显式BDF方法的数值稳定性区域的描述,最后通过数值算例验证了这种刻画稳定区域的方法的可行性。