论文部分内容阅读
目的传统的L1稀疏表示目标跟踪,是将所有候选目标表示为字典模板的线性组合,只考虑了字典模板的整体信息,没有分析目标的局部结构。针对该方法在背景杂乱时容易出现跟踪漂移的问题,提出一种基于正例投票的目标跟踪算法。方法本文将目标表示成图像块粒子的组合,考虑目标的局部结构。在粒子滤波框架内,构建图像块粒子置信函数和相似性函数,提取正例图像块。最终通过正例权重投票估计跟踪目标的最佳位置。结果在14组公测视频序列上进行跟踪实验,与多种优秀的目标跟踪算法相比,本文跟踪算法在目标受到背景杂乱、遮挡、光照变化等复杂环