论文部分内容阅读
为了提高短期电力负荷预测的准确性,降低因预测精度不高带来的电能损失,提出将花朵授粉算法(flower pollination algorithm,FPA)与BP神经网络相结合,利用FPA算法具有收敛速度快、全局搜索能力强的特点,对BP神经网络的权值和阈值进行优化,改善传统BP神经网络因权值和阈值的选择具有随机性而陷入局部最优和收敛速度慢的缺点。最后,通过某地区实际负荷数据验证了优化后的BP神经网络的预测精度得到了提高。