论文部分内容阅读
一、导数在高中数学中的应用(一)结合导数意义,确定函数的解析式在函数的应用中,如果能够求解出函数的解析式,那就可以更好的研究函数的性质,对于函数的解析可以起到更好的作用。例2:已知一个函数原型是y=ax~3+bx~2+cx+d,并且知道此函数的坐标图像与y轴存在一个交点,为A点,基于图像作图可知,此函数在A点交点处的切线方程为12x-y-
First, the derivative in high school mathematics (a) combined with the meaning of derivatives to determine the function of the analytic function in the application, if we can solve the function of the analytic formula, it can better study the nature of the function, the function of Parsing can play a better role. Example 2: It is known that a function prototype is y = ax ~ 3 + bx ~ 2 + cx + d, and we know that the coordinate image of this function has an intersection with the y axis, which is point A. Based on the image plotting, The tangent at the intersection of point A is 12x-y-